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of meristem function, but may be
dispensable in organ primordia where
the main emphasis may be on

a maximal growth rate.
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Animal Cognition: The Trade-off

to Being Smart

Great tits that learn to manipulate a device to obtain food in the laboratory go on
to lay more eggs in the wild. However, the solver great tits are also more likely to

desert their nest.

Susan D. Healy

Most of us think it pays to be smart.
After all, surely that is the reason that
humans are, arguably, the most
dominant species on our planet,

and certainly the one having the most
significant impact. We know that we
are really smart, not just because we
have one of the largest brains (relative
to body size) of any extant animal,

but because we are also remarkable
innovators and problem solvers. It may
seem surprising, then, that the work
reported in this issue of Current Biology
by Cole et al. [1] is, to my knowledge,
the first concrete evidence that
problem-solving abilities might have
positive fitness benefits. Cole et al. [1]
show that smart is good by discovering
that adult great tits that learn how to
access food from a novel man-made
food container go on to lay more eggs
than those birds that fail to solve this
problem. These parents also spend
less time foraging for their young. What

good news, the smart can afford to be
lazy, too!

If the benefits to being smart are
all too obvious, why has it taken
so long for anyone to collect
convincing data confirming the
fitness benefits? In part, this is
likely to be because few have
thought it worth the bother to check.
After all, we have daily proof of
our own ingenuity and its value.
Additionally, the researchers who
are typically the most interested
in cognitive abilities are most
interested in understanding the
mechanisms underpinning what
animals can learn and remember:
that work often does not easily
lend itself to helping to determine
whether better task performance is
beneficial to the subject outside the
context of the experiment or what
those benefits might be (especially
if the experimental context is very
controlled or contrived). Moreover,
measuring fitness benefits of a given

trait in the real world is never easy,
regardless of the trait.

In the Cole et al. [1] work, it took the
measuring of problem solving in over
400 birds, taken briefly into captivity,
followed by the counting of the
number of eggs laid by those birds
over the four years, to show an effect.
Although it is standard procedure to
test cognitive abilities in birds over
the course of hundreds or thousands
of trials, it is far from standard to
examine those abilities in over 400
birds. Testing of subjects may also
occur across years, especially in
long-lived species like corvids,
pigeons or primates [2], but never with
such a number of subjects and not
associated with offspring production
or success.

Cole et al.’s [1] pioneering work
will not be easily augmented. This is
not least because in the great tits,
the authors could couple two major
logistic advantages: access to a large
number of subjects, close to hand,
from the well-known breeding
population in Wytham Wood plus
the great tit temperament. These
birds respond well enough to
captivity to allow experimental
behavioural manipulations in a period
of time short enough to enable the
testing of many animals [3]. As ever,
success lies in the logistical features
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of a system and the testing of
cognitive abilities in wild animals is
heavily reliant on combining the right
animal with the appropriate testing
conditions. To date, there are few
systems where cognition in wild
animals has been examined in depth
and most of these depend, as in
Cole et al.’s [1] work, on tests of
cognitive performance in animals in
captivity [4-7], although there are
exceptions, such as the testing of

a range of cognitive abilities in
hummingbirds [8-11], of spatial
abilities in primates [12] and problem
solving in New Caledonian

crows [13,14].

That it will prove hard to follow
the lead of Cole et al. [1] is a pity as
their study is both timely and crucial.
Timely because there is increasing
interest in the role that cognition
plays in decisions that animals make
[15,16] and crucial because it is
becoming clear that what constitutes
cognitive ability depends, not on
the eye of the beholder, but rather,
on the mind of the experimenter.

In Cole et al. [1] (and in an earlier
paper [17]) the measure of cognitive
ability is based on the ability of the
great tits to solve a problem, which
was to remove a lever from a device

in order to gain food. Problem solving,
although often regarded as requiring
some coghnitive skill, is actually

a rather difficult ability to measure
objectively. Typically the problem is
one that is set by an experimenter,
who by designing an experiment
necessarily imposes a subjective
degree of difficulty on the ‘problem’.
Such problems often require an animal
to manipulate a component of a piece
of equipment to access food (as in Cole
et al.’s [1] work). Classic examples
include Kohler’'s chimpanzees that
pushed and stacked boxes to obtain
food [18] and wild blue tits became the
bird brains of Britain by solving
agarden version of a task similar to that
used by Cole et al. [1]. More recently
though, Betty the crow bent a piece of
wire into a hook to access food that
was out of reach [19], and indeed,
corvids have now eclipsed blue tits in
the bird-brain stakes because they can
solve what seem to be harder
problems.

There is a problem, however, with
using problem solving as a measure
of cognitive ability. Firstly, what
constitutes a ‘problem’? It might
seem clear that since animals face

problems every day in obtaining food,
food-finding or obtaining food tasks
represent ‘real’ problems for animals,
but do they? We only assume that
manipulating moveable parts of

a device containing food (or bending
wire) is analogous to natural foraging.
Second, and more importantly, how
do we rate the difficulty of a problem?
Is it the number of steps the animal
must complete before success,

or the number of different physical
manoeuvres required for success?

If so, this risks us imposing our idea
that complex is the same as ‘hard’
(and what if each step is easy?). Or
should we use the performance of

the animals, such as the time taken

to solve the problem, or the number
of attempts that are successful?
When performance is measured

like this, there is the well-known
confounding effect of motivation.

If an animal does poorly, is it

because the task is hard, or because
they are stressed by the testing
conditions (which may or not be

due to task difficulty)? Furthermore,
do we want tasks where success or
failure is the only possible outcome
(as in Cole et al. [1])? These designs
may lack sensitivity to resolve variation
among individuals and we very

rarely assess our own performance
dichotomously, and neither does
natural selection. We do believe that
problem solving is telling us something
about cognitive ability but the problem
we have yet to solve is quite what that
something is.

There is one final reason why it has
taken so long to demonstrate the
fitness benefits of superior cognitive
abilities: as with everything in
evolution, being smart doesn’t come
for free. Great tits that solved Cole
et al.’s [1] foraging problem laid
more eggs and fed their babies
less often but they were also more
likely to desert their nest, for
reasons as yet unclear. They are
also less competitive at feeders
than nonsolvers [17]. One possible
explanation is that the problem
solvers are more susceptible to stress
[20], but why this would be so is also
unclear.
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